Spin-orbit coupling and electron spin resonance theory for carbon nanotubes.
نویسندگان
چکیده
A theoretical description of electron spin resonance (ESR) in 1D interacting metals is given, with primary emphasis on carbon nanotubes. The spin-orbit coupling is derived, and the resulting ESR spectrum is analyzed using a low-energy field theory. Drastic differences in the ESR spectra of single-wall and multiwall nanotubes are found. For single-wall tubes, the predicted double peak spectrum is linked to spin-charge separation. For multiwall tubes, a single narrow asymmetric peak is expected.
منابع مشابه
Spin-orbit coupling and electron spin resonance theory for carbon nanotubes
Copyright & reuse City University London has developed City Research Online so that its users may access the research outputs of City University London's staff. Copyright © and Moral Rights for this paper are retained by the individual author(s) and/ or other copyright holders. All material in City Research Online is checked for eligibility for copyright before being made available in the live ...
متن کاملLarge spin-orbit coupling in carbon nanotubes.
It has recently been recognised that the strong spin-orbit interaction present in solids can lead to new phenomena, such as materials with non-trivial topological order. Although the atomic spin-orbit coupling in carbon is weak, the spin-orbit coupling in carbon nanotubes can be significant due to their curved surface. Previous works have reported spin-orbit couplings in reasonable agreement wi...
متن کاملMAGNETISATION AND ELECTRON SPIN RESONANCE STUDIES OF TETRAHEDRAL AMORPHOUS CARBON
The magnetisation and electron spin resonance (ESR) spectrum of two specimens of tetrahedral amorphous carbon (ta-C), deposited from a filtered cathodic arc, were measured over a wide temperature range. The magnetisation was found to consist of superparamagnetic, paramagnetic and diamagnetic contributions. The superparamagnetic contribution resembled that recently found in carbon prepared from ...
متن کاملSpin-based Optomechanics with Carbon Nanotubes
A simple scheme for determination of spin-orbit coupling strength in spinbased optomechanics with carbon nanotubes is introduced, under the control of a strong pump field and a weak signal field. The physical mechanism comes from the phonon induced transparency (PIT), by relying on the coherent coupling of electron spin to vibrational motion of the nanotube, which is analogous to electromagneti...
متن کاملObservation of the triplet exciton in EuS-coated single-walled nanotubes.
Photon absorption by carbon nanotubes creates bound electron-hole pairs called excitons, which can exist in spin-polarized triplet or spin-unpolarized singlet configurations. Triplet excitons are optically inactive owing to the weak spin-orbit coupling in nanotubes. This prevents the optical injection of electron spin into nanotubes for spintronic applications and limits the efficiency of photo...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 88 20 شماره
صفحات -
تاریخ انتشار 2002